1466 lượt thi
4 câu hỏi
45 phút
Câu 1:
Thực hiện phép tính: 1x2+3x+2−2xx3+4x2+4x+1x2+5x+6.
1x2+3x+2−2xx3+4x2+4x+1x2+5x+6
=1x2+2x+x+2−2xx(x2+4x+4)+1x2+3x+2x+6=1x(x+2)+(x+2)−2xx(x+2)2+1x(x+3)+2(x+3)=1(x+2)(x+1)−2xx(x+2)2+1(x+3)(x+2)=x(x+2)(x+3)x(x+1)(x+2)2(x+3)−2x(x+1)(x+3)x(x+1)(x+2)2(x+3)+x(x+1)(x+2)x(x+1)(x+2)2(x+3)=x(x+2)(x+3)−2x(x+1)(x+3)+x(x+1)(x+2)x(x+1)(x+2)2(x+3)=x3+5x2+6x−2x3−8x2−6x+x3+3x2+2xx(x+1)(x+2)2(x+3)=2xx(x+1)(x+2)2(x+3)=2(x+1)(x+2)2(x+3).
Câu 2:
=12x+3−12x−3+x−22x2−x−3=12x+3−12x−3+x−22x2+2x−3x−3=12x+3−12x−3+x−22x(x+1)−3(x+1)=(2x−3)(x+1)(2x−3)(2x+3)(x+1)−(2x+3)(x+1)(2x−3)(2x+3)(x+1)+(x−2)(2x+3)(2x−3)(2x+3)(x+1)=(2x−3)(x+1)−(2x+3)(x+1)+(x−2)(2x+3)(2x−3)(2x+3)(x+1)=2x2−x−3−2x2−5x−3+2x2−x−6(2x−3)(2x+3)(x+1)=2x2−7x−12(2x−3)(2x+3)(x+1).
Câu 3:
=1x2+2x−x−2+1x2−2x+x−2+1+xx2+2x+1−x−3=1x(x+2)−(x+2)+1x(x−2)+(x−2)+1+xx2+2x−x−2=1(x−1)(x+2)+1(x+1)(x−2)+1+x(x−1)(x+2)=(x+1)(x−2)(x−1)(x+1)(x−2)(x+2)+(x−1)(x+2)(x−1)(x+1)(x−2)(x+2)+(1+x)(x+1)(x−2)(x−1)(x+1)(x−2)(x+2)=x2−x−2+x2+x−2+x3−3x−2(x−1)(x+1)(x−2)(x+2)=x3+2x2−3x−6(x−1)(x+1)(x−2)(x+2)=(x2−3)(x+2)(x−1)(x+1)(x−2)(x+2)=x2−3(x−1)(x+1)(x−2).
Câu 4:
=11−x+11+x+21+x2+41+x4+81+x8+161+x16=21−x2+21+x2+41+x4+81+x8+161+x16=41−x4+41+x4+81+x8+161+x16=81−x8+81+x8+161+x16=161−x16+161+x16=321−x32.
2 câu hỏi